Tulaprocess.ru

Ремонт и стройка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощность электрического тока таблица

Работа и мощность тока

Какую работу совершает электрический ток, проходя по тому или иному участку цепи? Чтобы определить это, вспомним, что такое напряжение. Согласно формуле (11.1) U = A/q. Отсюда следует, что

где A — работа тока; q — электрический заряд, прошедший за данное время через рассматриваемый участок цепи. Подставляя в последнее равенство выражение q = It, получаем

Итак, чтобы найти работу тока на участке цепи, надо напряжение на концах этого участка U умножить на силу тока I и на время t, в течение которого совершалась работа.

Действие тока характеризуют не только работой A, но и мощностью P. Мощность тока показывает, какую работу совершает ток за единицу времени. Если за время t была совершена работа A, то мощность тока P = A/t. Подставляя в это равенство выражение (18.2), получаем

Итак, чтобы найти мощность электрического тока P, надо силу тока I умножить на напряжение U.

В Международной системе единиц (СИ) работу выражают в джоулях (Дж), мощность — в ваттах (Вт), а время — в секундах (с). При этом

1 Вт = 1 Дж/с, 1 Дж = 1 Вт · с.

Мощности некоторых электроустройств, выраженные в киловаттах (1 кВт = 1000 Вт), приведены в таблице 5.

Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать I = 10 А, то при напряжении U = 220 В соответствующая электрическая мощность оказывается равной:

P = 10 A · 220 В = 2200 Вт = 2,2 кВт.

Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока и потому недопустимо.

В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения оказывается пропорциональной силе тока и напряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах (кВт·ч).

1 кВт·ч — это работа, совершаемая электрическим током мощностью 1 кВт в течение 1 ч. Так как 1 кВт = 1000 Вт, а 1 ч = 3600 с, то

1 кВт·ч = 1000 Вт · 3600 с = 3 600 000 Дж.

. 1. Как находится работа электрического тока? 2. По какой формуле находится мощность тока? 3. С помощью какого прибора измеряют работу тока? Какая единица работы при этом используется? 4. Сложите мощности всех имеющихся у вас дома электрических устройств. Допустимо ли их одновременное включение в сеть? Почему?

Экспериментальное задание. Рассмотрите у себя дома счетчик электроэнергии. Выясните, как снимаются с него показания. Измерьте с его помощью электроэнергию, израсходованную задень. В течение следующего дня старайтесь экономить энергию — не оставляйте включенным свет, если это не нужно; выключайте электроприборы, которыми в данный момент не пользуетесь; не смотрите все подряд по телевизору. После этого определите с помощью счетчика, сколько электроэнергии вам удалось сэкономить. Вычислите стоимость этой энергии. Сколько денег вам удастся сберечь при подобной экономии энергии за месяц?

Как рассчитать мощность электрического тока?

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U 2 /R

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I 2 *R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U 2 /R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Читать еще:  Как выбрать ковер в спальню

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I 2 *R = 25*6 = 150 Вт

Видео по теме

Формула мощности тока

Электрический ток, на каком угодно участке цепи совершает некоторую работу (А). Допустим, что у нас есть произвольный участок цепи (рис.1) между концами которого имеется напряжение U.

Работа, которая выполняется при перемещении заряда равного 1 Кл между точками A и B (рис.1) будет равна U. В том случае, если через проводник протекает ток силой I за время равное $Delta t$ по указанному выше участку пройдет заряд (q) равный:

Следовательно, работа, которую совершает электрический ток на данном участке, равна:

$$A=U cdot I cdot Delta t(2)$$

Надо отметить, что выражение (2) является справедливым при I=const для любого участка цепи (в таком участке могут содержаться проводники 1–го и 2–го рода).

Определение и формула мощности тока

Мощность тока – есть работа тока в единицу времени:

Формулой для вычисления мощности можно считать выражение:

В том случае, если участок цепи содержит источник тока, то формулу мощности можно представить в виде:

$$P=left(varphi_<1>-varphi_<2>right) I+varepsilon I$$

где $left(varphi_<1>-varphi_<2>right)$ – разность потенциалов, $varepsilon$ – ЭДС источника, который включен в цепь.

Выражение (5) является интегральной записью. Это выражение можно представить в дифференциальной форме, если использовать понятие удельной мощности ($P_=frac$ – мощность, развиваемая током в единице объема проводника):

где j – плотность тока, $rho$ – удельное сопротивление.

Единицы измерения мощности тока

Основной единицей измерения мощности тока (как и мощности вообще) в системе СИ является: [P]=Вт=Дж/с.

Выражение (4) применяют в системе СИ для того, чтобы дать определение единицы напряжения. Так, единицей напряжения (U) является вольт (В), который равен: 1 В= (1 Вт)/(1 А).

Вольтом называют электрическое напряжение, которое порождает в электроцепи постоянный ток силы 1 А при мощности 1 Вт.

Примеры решения задач

Задание. Какой должна быть сила тока, которая течет через обмотку электрического мотора для того, чтобы полезная мощность двигателя (PA) стала максимальной?Какова максимальная полезная мощность? Если двигатель постоянного тока подключен к напряжению U, сопротивление обмотки якоря – R.

Решение. Мощность, которую потребляет электроприбор, идет на нагревание (PQ) и совершение работы (PA):

Мощность, идущую на нагревание можно рассчитать как:

Потребляемую мощность найдем как:

Выразим $P_A$ из (1.1) и используем (1.2) и (1.3):

Для нахождения экстремума функции, которая представлена в выражении (1.4) найдем производную $frac$ и приравняем ее к нулю:

Найдем максимальную полезную мощность,используя выражение (1.4) и Imax:

Формула мощности тока не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Электрические лампочкис мощностями P1 и P2 номинальным напряжением U1=U2 соединяют последовательно (рис.2) и включают в сеть с постоянным напряжением U. Какова мощность, потребляемая первой лампочкой P1 * ).

Решение. Лампочки по условию задачи соединены последовательно, значит сила тока, текущая через лампочки одинакова, а падение напряжения на каждой из лампочек зависит от их сопротивлений. Искомую мощность можно найти как:

Сопротивления лампочек можно найти из данных в условиях номинальных мощностей:

Силу тока можно найти по закону Ома, учитывая, что лампочки соединены последовательно:

Решая уравнения (2.1) – (2.3) совместно получим:

Расчета мощности электрического тока — формула и таблица онлайн расчета

Иногда можно услышать такой простой вопрос: «какая мощность в розетке?». Ответ, как ни странно, чаще всего такой: 10 ампер. Или – 220 вольт. Понятно, что вопрос – дурацкий. Но и объяснение не лучше – «А на розетке так написано».

Мощность и ток

Если правильно отвечать на поставленный вопрос, то для читателей, прогуливающих в детстве уроки физики, можно сказать, что мощность электричества зависит от двух величин:

  • величины напряжения;
  • силы тока.

В общем, эти две величины определяют величину мощности как переменного, так и постоянного тока. Память может подсказать что-то типа: для участка цепи, для полной цепи. Это отголоски того же школьного учебника физики, где говорится о законе Ома.

Да, этот знаменитый закон и позволяет рассчитать мощность электрического тока. Конечно, школьная программа представляла этот закон для цепей постоянного тока, но суть от этого не меняется. Формула вечная и неизменная: P = U х I.

Перефразируя закон ома в простой язык, получаем простой ответ на вопрос о мощности в розетке: сила тока зависит от нагрузки.

Сила тока и приложенная нагрузка

Тривиальное понятие этого тезиса позволит не производить элементарных действий, постоянно совершаемых нами, или окружающими нас людьми:

  • включать один электрический удлинитель в другой, втыкая в оба все доступные вилки от разных, иногда достаточно мощных, потребителей электроэнергии;
  • подключать к севшему аккумулятору автомобиля другой, соединяя их проводами от старой электропроводки;
  • наращивать провода от электрического чайника кабелем с витой парой;
  • устанавливать в гараже нагреватель, мощностью 5 квт, подключая его к обыкновенной розетке.

Аналогичные примеры неграмотных действий можно приводить до бесконечности. Человеческая беспечность не знает границ. Чтобы больше не допускать подобных ошибок, давайте разберем как правильно производить расчет электрической мощности.

Чайник и электрическая мощность

Не забивая головы простейшими формулами (есть дела и поважнее этого), запомним простое соотношение, достаточное для применения его в быту. Точность его не соответствует формуле расчета, но позволяет помнить, что: 1 квт электроэнергии – это приблизительно 5 ампер тока в сети 220 вольт.

Таким образом, становится понятно, что электрический чайник, включенный в кухонную розетку, потребляет около 5 ампер тока. А лампа накаливания, мощностью 100 Вт – в десять раз меньше: 0,5 ампера. Конечно, такие примитивные знания нужны для домохозяек, расчет мощности электрического тока производится по формулам.

Необходимость расчетов мощности

Человек мало сталкивается с необходимостью проведения расчетов (мощностей постоянного электрического тока) в быту. Чаще всего такая необходимость возникает при ремонте автомобиля, где источником тока служит аккумулятор. Или какой-то продвинутый пользователь начинает подбирать новый кулер для своего процессора в компьютере.

Чаще возникает необходимость провести элементарные расчеты при ремонтных работах в квартире, при подборе сгоревшего блока питания и пр.

Расчет мощности электрического тока по формулам

Существует формула расчета электрического тока для однофазной и трехфазной сети. Вряд ли кто-то захочет и сможет ими воспользоваться – разбираться что такое cosφ при замене электрической проводки в доме или квартире нецелесообразно.

Реально можно произвести все необходимые расчеты в режиме онлайн. Интернет набит разными таблицами, соответствующими графиками и калькуляторами. Для очень нуждающихся читателей можно добавить, что сечение кабеля для осветительной сети — 1,5 кв. мм. А для электропитания розеток применяется кабель сечением 2,5 кв. мм.

Остальные расчеты, требующиеся при производстве электромонтажных работ в различных областях деятельности – лучше доверить специалистам, которые в своей работе используют различные приборы: амперметры, вольтметры, индикаторы фазы, измерители сопротивления изоляции, измерители сопротивления заземления и пр.

Ремонт и строительство домов и квартир, особенности расчетов

Чтобы произвести расчет электропроводки в квартире недостаточно произвести подбор сечения электрических проводов. В электрическом щите устанавливаются и электрические автоматы, и защитные устройства и электрический счетчик. Эти установочные изделия также подбираются и рассчитываются при разработке проекта электропитания, в котором производится также расчет количества и параметров устройств защитного заземления.

Для расчетов и подбора видов электропроводки, использующейся при изготовлении удлинителей, организации временных схем электропитания, необходимо понимать, что силовые кабели для однофазной и трехфазной цепи различны по количеству жил, условиям прокладки, токовым нагрузкам и прочим параметрам.

При использовании кабелей и проводов необходимо учитывать и материал изготовления токопроводящих жил.

Наличие в загородном доме, даче трехфазных потребителей электроэнергии, таких как скважинный насос, электродвигатели, сварочное оборудование, требует при подборе кабелей электропроводки учитывать их пусковые токи. А при выборе электрического счетчика электроэнергии – активную и реактивную составляющую в потребляемой мощности, если предполагается постоянная работа трехфазного оборудования.

Зависимость мощности от силы тока, формула мощности, физический смысл

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.

Выясним, что же представляет собой понятие электричество?

Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз

И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.

А теперь, перейдем к главному.

Основа-основ науки об электричестве – закон Ома.

Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R

Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.

Вся остальная электротехника «пляшет» от этого.

О мощности электрического тока

В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.

Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.

Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:

Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.

Читать еще:  Полиуретановый герметик для дерева

Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.

Мощность электрического тока таблица

Зная работу, совершаемую током за некоторый промежуток времени, можно рассчитать и мощность тока, под которой, так же как и в механике, понимают работу, совершаемую за единицу времени. Из формулы , определяющей работу постоянного тока, следует, что мощность его

. (58.1)

Таким образом, мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка.

Нередко говорят о мощности электрического тока, потребляемой из сети, желая этим выразить мысль, что при помощи электрического тока («за счет тока») совершается работа моторов, нагреваются плитки и т. д. В соответствии с этим на приборах нередко обозначается их мощность, т. е. мощность тока, необходимая для нормального действия этих приборов. Так, например, 220-вольтовая электроплитка мощности 500 Вт есть плитка, для нормальной работы которой требуется ток около 2,3 А при напряжении 220 В (так как ).

Если в формуле (58.1) ток выражен в амперах, а напряжение в вольтах, то мощность получится в джоулях в секунду (Дж/с), т. е. в ваттах (Вт) (см. том I). На практике употребляют также более крупную единицу мощности киловатт: . Таким образом, один ватт есть мощность, выделяемая током один ампер в проводнике, между концами которого поддерживается напряжение один вольт. В электротехнике применяется единица работы, называемая киловатт-часом (кВт×ч): один киловатт-час равен работе, совершаемой током мощности один киловатт в течение одного часа. Нетрудно сосчитать, что . В киловатт-часах обычно выражают энергию, на которую электростанции подают счета потребителям электроэнергии. Конечно, такой единицей работы можно пользоваться не только в электротехнике, но и для оценки работы любой машины, например пароходного или автомобильного двигателя.

58.1. Какое количество теплоты выделяет 25-ваттная электрическая лампочка за секунду?

58.2. Цена одного киловатт-часа электрической энергии равна 4 коп. Во что обходится один час горения электрической лампочки, потребляющей ток 0,2 А при напряжении 220 В?

58.3. Определите сопротивление электрической лампочки, рассчитанной на напряжение 220 В и потребляющей мощность 25 Вт.

58.4. Две электрические 220-вольтовые лампочки расходуют соответственно мощность 15 и 100 Вт. Какая из лампочек потребляет больший ток? У какой из лампочек больше сопротивление? Определите для каждой лампочки силу тока и сопротивление (когда нить лампочки накалена).

58.5. Для освещения квартиры требуется ток 5 А при напряжении 220 В. Какая мощность при этом расходуется?

58.6. Объясните, почему провода, подводящие ток к электрической лампочке, практически не нагреваются, в то время как нить лампочки раскаляется добела?

58.7. Чередующиеся куски медной, железной и никелиновой проволоки одинакового диаметра спаяны между собой на стык и включены в цепь тока. Какие проволоки будут нагреваться сильнее? Какие из этих проволок будут нагреваться сильнее, если они включены параллельно?

58.8. Можно ли включить в сеть с напряжением 220 В последовательно две лампы одинаковой мощности, рассчитанные на 110 В? Можно ли так же включить две 110-вольтовые лампы разной мощности, например 25 и 100 Вт? Каково будет при этом напряжение на каждой из ламп и что произойдет?

58.9. Для освещения новогодней елки от сети 220 В хотят использовать гирлянды маленьких лампочек, рассчитанные на напряжение 110 В, включив их последовательно. Можно ли сделать это, если: а) гирлянды одинаковы; б) одна гирлянда составлена из 6-вольтовых, а другая из 8-вольтовых лампочек одинаковой мощности; в) гирлянды составлены из 6- и 8-вольтовых лампочек различной мощности, подобранных так, чтобы общая мощность, поглощаемая каждой из гирлянд, была одной и той же?

58.10. Молния – это электрический ток, проходящий в течение примерно 0,001 с между двумя облаками или облаком и Землей. Разность потенциалов на концах этих тел достигает миллиарда вольт, а сила тока в среднем равна 20 кА. Подсчитайте, во что обошлась бы одна молния по цене 4 коп. за 1 кВт×ч. Учитывая, что в среднем на поверхность Земли падает 100 молний в секунду, подсчитайте общий запас энергии, идущий на возникновение молний за год.

58.11. Во сколько раз повышение температуры при прохождении электрического тока по железным проводам больше, чем по медным того же сечения, если через них проходит ток одинаковой силы? Рассмотрите случай, когда провода хорошо изолированы, так что теплоотдачей их можно пренебречь, а ток сравнительно невелик и проходит в течение короткого времени, так что оба провода нагреваются слабо и их температурными коэффициентами сопротивления и теплоемкостями также можно пренебречь. Удельные теплоемкости меди и железа равны 0,40 и 0,46 кДж/(кг×К), их плотности равны и кг/м3. Воспользуйтесь также табл. 2 (§ 47).

Мощность электрического тока

Мощность электрического тока – один из основных параметров, определяющих работу электроцепи, наряду с напряжением и силой тока. Этот показатель всегда присутствует в технических характеристиках двигателей, трансформаторов, генераторов.

Генератор на электростанции

Определение

Чтобы понять, что такое мощность тока, надо определить его работу, так как они неразрывно связаны. Работа электротока заключается в энергопреобразовании из электрического вида в тепловой, кинетический и т. д. Мерилом этой энергии является работа. А мощность электрического тока – это скорость, с которой происходят преобразования. Формулой можно выразить:

В чем измеряется мощность тока, проистекает из формулы, – Дж/с. Получилась единица измерения, называемая ватт (Вт). Другая единица измерения мощности, часто применяемая в энергетике, – следствие из другой формулы:

Это вольтампер (ВА) и производные от нее кВА, мВА.

Важно! Благодаря последней формуле, можно заметить, что идентичную мощность электрического тока возможно получить при повышенном напряжении и маленьком токе либо при перемене местами количественного значения этих показателей. Так как при большом токе потери выше, эту зависимость используют, передавая электроэнергию по высоковольтным ЛЭП на значительные дистанции.

В электроцепях на постоянном токе существует один вид мощности, измеряемый в ваттах. Электрическая мощность, используемая при расчетах электросетей переменного тока, может быть:

  • активная;
  • реактивная;
  • полная;
  • комплексная.

Активная

Этот вид мощности электрического тока определяет работу, целиком затраченную на энергопреобразования. Пример – энергия, выделившаяся на нагрев сопротивления.

Формула расчета:

где «φ» – это угол, на который сдвинуты фазы между векторами тока и напряжения.

Показатели U и I при подстановке в формулическое выражение берутся среднеквадратичные.

Формулы для расчета мощности

Реактивная

Реактивная мощность электрического тока применяется для оценки количественного показателя емкостной и индуктивной нагрузки на сеть.

Формула расчета:

Для реактивной мощности электрического тока применяют единицу измерения вольтампер реактивный (ВАр, кВАр, мВАр).

Реактивная часть появляется при расчете мощности в электрической цепи, к которой подключена индуктивность или емкость:

  1. Индуктивность – это любая катушка: трансформаторная, реакторная, обмотки электродвигателя и т. д. Из-за происходящих процессов самоиндукции электрическая энергия не вся преобразовывается в другой вид, а определенное количество возвращается в сеть. Так как вектор ее смещен по фазе, сеть работает с перегрузкой;
  2. Конденсатор, представляющий собой емкость, работает аналогичным образом, но смещение вектора возвращаемой энергии находится в противофазе по сравнению с индуктивным.

Важно! Для повышения качества электроэнергии и более эффективной работы электросетей свойство индуктивности и емкости работать в противофазе используется для компенсации реактивной энергии (применение конденсаторных батарей).

Полная

Зная активную и реактивную составляющую, можно определить, чему равна полная мощность электрического тока. Хотя она не характеризует потребление энергии по факту, расчеты необходимы для определения нагрузки на компоненты электросетей: воздушные и кабельные линии, коммутационные аппараты, трансформаторы.

Формула расчета:

S = U*I, результат измеряется в вольтамперах.

Если использовать для расчета активную и реактивную составляющую, то полное мощностное значение определяется извлечением квадратного корня из суммы их квадратов.

Как измеряется

Количественный мощностной показатель измеряется несколькими способами с помощью разных приборов:

  • ваттметры, варметры для прямых замеров;
  • амперметры и вольтметры для косвенных замеров;
  • фазометр, позволяющий оценить влияние реактивной составляющей.

Прямые замеры

Служат для прямого измерения активного и реактивного мощностного показателя. Все ваттметры и варметры делятся на:

  1. Аналоговые. Существуют стрелочные приборы и с самопишущими устройствами. На них отображается активная мощностная величина. Состоят из неподвижной катушки, включенной в цепь последовательно, и подвижной с параллельным подключением. Стрелка отклоняется от взаимного влияния создаваемых магнитных полей;
  2. Цифровые. Содержат микропроцессоры, вычисляющие значения активной и реактивной составляющих на основе измерений тока и напряжения.

Существуют трехфазные и однофазные приборы, многофункциональные ваттметры для замеров других параметров: частоты, силы тока, напряжения.

Косвенные замеры

При косвенных замерах в цепь подключается амперметр и вольтметр, снимаются их показания, затем, подставляя их в формулическое выражение, вычисляется количественный мощностной показатель.

Фазометры

Замерить коэффициент, на который умножается активная мощность, cos φ, можно с помощью фазометра, что позволяет оценить влияние реактивного компонента.

Аналоговое устройство работает по тому же принципу, что и идентичный ваттметр. Только шкала проградуирована в значениях cos φ. Подключение прибора производится к одним клеммам последовательно, к другим –параллельно, чтобы измерять напряжение и электроток. В трехфазных устройствах надо подсоединить все фазы.

Высокоточные цифровые приборы содержат детекторы, непосредственно сравнивающие фазы, и микропроцессоры, обрабатывающие информацию.

Фазометры нашли широкое применение при регулировании работы генераторов и синхронных электродвигателей:

  1. У синхронного электродвигателя cos φ зависит от возбуждающего тока. При регулировании его функционирования в режиме отдачи реактивной составляющей, чтобы уменьшить ее негативное влияние, используют фазометр;
  2. В генераторах применяется ручное регулирование cos φ с целью поддержания стабильности его параметров в пусковых режимах. Если нагрузка индуктивная, и cos φ в индуктивной зоне шкалы снижается, возможен опасный нагрев статорной обмотки. При нахождении cos φ в емкостной зоне генератор работает на потребление тока, что недопустимо.
Читать еще:  Красивая гардина в спальню

Регулирование cos φ

Если cos φ понижается, то в сети увеличиваются потери, а полезная часть работы по преобразованию электроэнергии уменьшается. Соответственно, растет потребление из сети. При этом напряжение падает.

Важно! Для обеспечения наилучшего соотношения параметров электросети необходимо поддерживать cos φ на уровне 0,95 в индуктивной части шкалы фазометра.

Для компенсации индуктивной нагрузки, уменьшающей cos φ, на электрических подстанциях устанавливают конденсаторные батареи. Когда индуктивная составляющая падает значительно, батареи отключаются. Иногда это реализуется в автоматическом режиме. Отслеживание cos φ производится по фазометру.

Расчеты разных видов мощности показывают, насколько работа сети надежна и эффективна, позволяют оценить потери в количественном выражении.

Видео

Лабораторная работа по физике для 8-го класса:«Измерение мощности и работы тока в электрической лампе»

Цели урока:

  • закрепить знания учащихся о работе и мощности электрического тока, научить рассчитывать стоимость электроэнергии, потребляемой бытовыми электроприборами и способам её экономии;
  • развивать практические умения и навыки пользования приборами для измерения параметров электрических цепей, совершенствовать учебно-информационные навыки (умение обрабатывать информацию и составлять таблицы), развивать наблюдательность, инициативу, внимание, память, воображение, творческие способности и познавательный интерес учащихся к физике;
  • воспитывать самостоятельность и коммуникативность через работу в группах, бережное отношение к своему здоровью (через знания о правилах безопасного использования электроприборов, с которыми мы соприкасаемся в жизни).

Тип урока:

Вид урока:

Оборудование урока (комплект для выполнения лабораторной работы):

  • источник питания;
  • низковольтная лампа на подставке;
  • вольтметр;
  • амперметр;
  • ключ;
  • соединительные провода;
  • секундомер (или часы с секундной стрелкой);

“Электричество – сколько оно стоит?… ”

План урока

Этапы урока

Время, мин

Приёмы и методы

І. Организационный момент, сообщение плана работы на уроке.

ІІ. Инструктаж по правилам техники безопасности.

ІІІ. Выполнение лабораторной работы.

Информация учителя, практические действия учащихся.

V. Расчёт стоимости электроэнергии (творческое задание №2).

Решение расчётной задачи.

VI. Подведение итогов урока.

VII. Домашнее задание

Ход урока

I. Организационный момент (2 минуты)

ІІ. Инструктаж по правилам техники безопасности (2 минуты)

Инструкция по технике безопасности при проведении лабораторной работы «Измерение мощности и работы тока в электрической лампе»

  1. Будьте внимательны и дисциплинированны, точно выполняйте указания учителя.
  2. Не приступайте к выполнению работы без разрешения учителя.
  3. Размещайте приборы, материалы, оборудование на своём рабочем месте таким образом, чтобы исключить их падение или опрокидывание.
  4. При проведении опытов не допускайте предельных нагрузок измерительных приборов.
  5. Следите за исправностью всех креплений в приборах и приспособлениях.
  6. При сборке экспериментальных установок используйте провода с наконечниками с прочной изоляцией без видимых повреждений.
  7. При сборке электрической цепи избегайте пересечения проводов.
  8. Источник тока к электрической цепи подключайте в последнюю очередь.
  9. Не прикасайтесь к находящимся под напряжением элементам цепей, лишённым изоляции.
  10. По окончании работы отключите источник электропитания, после чего разберите электрическую цепь.

ІІІ. Выполнение лабораторной работы (25 минут)

Учитель рассказывает (и демонстрирует) порядок выполнения лабораторной работы:

  • собрать цепь из источника питания, лампы, амперметра и ключа, соединив всё последовательно;
  • подключить вольтметр параллельно лампе, замкнуть ключ и измерить напряжение ( U ) на лампе;
  • измерить амперметром силу тока ( І ) в цепи;
  • начертить в тетради схему собранной цепи и записать показания приборов;
  • вычислить мощность тока в лампе по формуле Р=UхI;
  • рассчитать работу тока в лампе по формуле А=UxIxt, измерив время ( t ) горения лампы в цепи;

Проводник

Напряжение U, В

Сила тока I, А

Время t, сек

Конспект урока по физике 8 класс по теме «Работа и мощность электрического тока»

в ходе урока вводятся понятия работа и мощность электрического тока и рассматривается практическое применение этих понятий в повседневной жизни.

Просмотр содержимого документа
«Конспект урока по физике 8 класс по теме «Работа и мощность электрического тока»»

Тема урока: «Работа и мощность электрического тока».

Цели урока:

предметные: формирование первоначальных представлений о ра­боте и мощности тока и формул, позволяющих определить эти величины на уровне понимания; познакомить с единицами измерения работы и мощности тока. Умение применять знания о работе и мощности тока для объяснения и анализу явлений окружающе­го мира, применять знания о работе и мощности тока к объяснению работы бытовых приборов.

Метапредметные: формирова­нием умений делать логические заключения на основе анализа уже из­вестных связей, проводить расчёты стоимости электроэнергии потребляемой в домашних условиях и способах её экономии.

— развивать физическое мышление учащихся, их творческие способности, умение самостоятельно формулировать выводы

— развивать речевые навыки;

Личностные: формирование потребность и интерес к предмету, к учебе, воспитывать инициативу, творческое отношение, воспитывать добросовестное отношение к учебе, умение слушать и быть услышанными;

Оборудование и материалы: Компьютер, мультимедиа-проектор, компьютерная презентация к уроку, индивидуальные карточки с тестом.

Тип урока: урок изучения нового материала.

Организационный момент.

Проверить готовность класса к уроку.

2. Актуализация опорных знаний.

Тест на умение рассчитывать сопротивление, силу тока и напряжение при параллельном соединении проводников.

— Поменяйтесь листочками и проверьте друг друга. Правильные ответы на тест вы видите на экране
Правильных: 9,10 ответов– 5 баллов, 7,8 ответов – 4 балла, 5,6 ответов – 3 балла, менее 5 ответов – 2 балла (тесты сдать учителю). У кого возникли трудности при выборе правильного ответа? По какому вопросу? Давайте попросим помощи одноклассников.

Тест. Виды соединения проводников

1. Какая величина из перечисленных одинакова для всех последовательно соединенных проводников?

А) напряжение; Б) сила тока; В) сопротивление.

2. Какая величина из перечисленных одинакова для всех параллельно соединенных проводников?

А) напряжение; Б) сопротивление; В) сила тока.

3. При каком соединении получается разрыв в цепи, если одна из ламп перегорит?

А) при параллельном; Б) при последовательном; В) при параллельном и последовательном.

4. При последовательном соединении проводников верно, что .
А. 1/R = 1/R1 + 1/R2 + . В. Rобщ больше большего из сопротивлений.
Б. R = R1 + R2 + . Г. Rобщ меньше меньшего из сопротивлений.

5. При параллельном соединении проводников верно, что .
А. Их общее сопротивление меньше меньшего из сопротивлений.
Б. R = R1 + R2 + .
В. Их общее сопротивление больше большего из сопротивлений.
Г. 1/R = 1/R1 + 1/R2 + .

6. Лампочку и резистор подключили к одинаковым источникам тока. В лампочке сила тока больше, чем в резисторе. Значит, .
А. сопротивление лампочки больше, чем сопротивление резистора.
Б. нельзя узнать, сопротивление чего больше: лампочки или резистора.
В. сопротивление резистора больше, чем сопротивление лампочки.
Г. лампочка и резистор имеют равные сопротивления.

7. Напряжение на проводнике R1 4 В. Какое напряжение на проводнике R2?

А) 8 В; Б) 2 В; В) 4 В; Г) 16 В.

8. Для чего в электрической цепи применяют реостат?

А. для увеличения напряжения; В. для регулирования силы тока в цепи.

Б. для уменьшения напряжения; Г. для уменьшения сопротивления в цепи

9. Какая из схем соответствует последовательному соединению проводников?

А. только 1; В. только 3;

Б. только 2; Г. 1 и 2.

10. Проводники сопротивлением 20 Ом и 30 Ом соединены параллельно. Вычислите их общее сопротивление.

А. 50 Ом; Б. 60 Ом; В. 600 Ом; Г. 12 Ом.

3. Мотивация.

Нам необходимо купить пылесос. На прилавках магазинов разнообразие товаров. Какой и как выбрать, чем руководствоваться?

4. Целеполание

Ребята, вы уже знаете, что прохождение электрического тока по проводнику представляет собой процесс упорядоченного движения зарядов в электрическом поле, существующем в проводнике. При этом силы электрического поля, действующие на заряды, совершают работу. Будем называть эту работу — работой тока.

-Приведите примеры, где ток совершает работу? (вентилятор, миксер, электрический чайник, лампа и т. д. )-Давайте подумаем: от чего зависит работа тока?

— Итак, цель нашего сегодняшнего урока — познакомиться с физическими величинами: ра­бота и мощность тока; усвоить формулы, позволяющие определить эти величины, узнать от чего зависит работа и мощность тока.

— В рабочих тетрадях запишите, пожалуйста, число, тему урока «Работа и мощность электрического тока».

5. Изучение нового материала

— Давайте вспомним, какая физическая величина характеризует электрическое поле?

— Характеристикой электрического поля является величина, называемая напряжением

— Что показывает электрическое напряжение?

— Напряжение показывает, какова работа электрического поля по переносу электрического заряда q из одной точки в другую

— Правильно. Отсюда мы можем сказать, что работа равна А= Uq

С другой стороны, мы знаем о том, что электрический заряд можно определить через силу тока, протекающего по проводнику, т.е. заряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику.

— Если в формулу для работы А= Uq подставить соотношение q=It, то получим формулу для вычисления работы электрического тока, работы электрического поля по перемещению электрического заряда А=UIt.

Вывод: работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

— Вспомним, в чем измеряется работа?

— Напряжение измеряют в Вольтах, силу тока – в Амперах, а время- в секундах, поэтому можно написать

[А ] = [ Дж ] = [ А*В*c]

— Какие же приборы нам потребуются, чтобы измерить работу электрического тока?

-Чтобы измерить работу тока, надо взять амперметр, вольтметр и часы

— Верно, все это сочетается в счетчике электрической энергии, которые есть в наших домах .Но одинаковую работу можно совершить за различное время. Например, нагрев воды электрическим чайником старой и новой модели.

-Какой величиной характеризуется быстрота выполнения работы?

-Мощностью: N=A/t

-В чем измеряют мощность?

-Мощность электрического тока обозначается P.

P— мощность электрического тока.

-Выведем формулу мощности электрического тока (слайд №6)

Для измерения мощности нужны: амперметр и вольтметр — это сочетается в ваттметре.

Вывод: мощность электрического тока равна произведению напряжения на силу тока.

Рассмотрите таблицу и сравните мощности устройств, применяемых в быту, технике, на производстве.

По таблице назовите мощность некоторых источников и потребителей, н-р минимальную и максимальную мощности .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector